Exchange of recA protein between adjacent recA protein-single-stranded DNA complexes.
نویسندگان
چکیده
We have examined the exchange of recA protein between stable complexes formed with single-stranded DNA (ssDNA) and (a) other complexes and (b) a pool of free recA protein. We have also examined the relationship of ATP hydrolysis to these exchange reactions. Exchange was observed between two different recA X ssDNA complexes in the presence of ATP. Complete equilibration between two sets of complexes occurred with a t1/2 of 3-7 min under a set of conditions previously found to be optimal for recA protein-promoted DNA strand exchange. Approximately 200 ATPs were hydrolyzed for every detected migration of a recA monomer from one complex to another. This exchange occurred primarily between adjacent complexes, however. Little or no exchange was observed between recA X ssDNA complexes and the free recA protein pool, even after several hundred molecules of ATP had been hydrolyzed for every recA monomer present. ATP hydrolysis is not coupled to complete dissociation or association of recA protein from or with recA X ssDNA complexes under these conditions.
منابع مشابه
Continuous association of Escherichia coli single-stranded DNA binding protein with stable complexes of recA protein and single-stranded DNA.
The single-stranded DNA binding protein of Escherichia coli (SSB) stimulates recA protein promoted DNA strand exchange reactions by promoting and stabilizing the interaction between recA protein and single-stranded DNA (ssDNA). Utilizing the intrinsic tryptophan fluorescence of SSB, an ATP-dependent interaction has been detected between SSB and recA-ssDNA complexes. This interaction is continuo...
متن کاملrecA protein-promoted DNA strand exchange. Stable complexes of recA protein and single-stranded DNA formed in the presence of ATP and single-stranded DNA binding protein.
The recA protein of Escherichia coli promotes the complete exchange of strands between full length linear duplex and single-stranded circular DNA molecules. An early step in this reaction consists of the binding of recA protein to single-stranded DNA. In the presence of ATP and the single-stranded DNA binding protein, recA protein and single-stranded DNA interact to form a complex whose stabili...
متن کاملSTABLE COMPLEXES OF recA PROTEIN AND SINGLE-STRANDED DNA FORMED IN THE PRESENCE OF ATP AND SINGLE-STRANDED DNA BINDING PROTEIN*
The recA protein of Escherichia coli promotes the complete exchange of strands between full length linear duplex and single-stranded circular DNA rnolecules. An early step in this reaction consists of the binding of recA protein to single-stranded DNA. In the presence of ATP and the single-stranded DNA binding protein, recA protein and single-stranded DNA interact to form a complex whose stabil...
متن کاملElectron microscopic visualization of the RecA protein-mediated pairing and branch migration phases of DNA strand exchange.
The RecA protein of Escherichia coli will drive the pairing and exchange of strands between homologous DNA molecules in a reaction stimulated by single-stranded binding protein. Here, reactions utilizing three homologous DNA pairs which can undergo both paranemic and plectonemic joining were examined by electron microscopy: supertwisted double-stranded (ds) DNA and linear single-stranded (ss) D...
متن کاملStabilization of recA protein-ssDNA complexes by the single-stranded DNA binding protein of Escherichia coli.
In vitro recombination reactions promoted by the recA protein of Escherichia coli are enhanced by the single-stranded DNA binding protein (SSB). SSB affects the assembly of the filamentous complexes between recA protein and ssDNA that are the active form of the recA protein. Here, we present evidence that SSB plays a complex role in maintaining the stability and activity of recA-ssDNA filaments...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 261 18 شماره
صفحات -
تاریخ انتشار 1986